

2. Cellular phenotyping by RNA profiling

Why is transcriptomics useful in forensic genetics?

 RNA of sufficient quality/quantity for analysis can be recovered from crime samples

DNA and RNA can be co-extracted

- RNA converted to DNA (cDNA): same downstream chemistry and analytical platform
- Unlike gDNA (2 copies per autosomal locus/cell) multiple judiciously selected loci are copied 100s to 1000s into RNA species (in certain body fluids/tissues)
 Digital gene expression (direct counting of transcripts) facilitates quantitative analysis
- Genomic information is directly encoded and faithfully reproduced in RNA
- transcripts
 MPS technology enables genomic encoded RNA sequences to be accessed
 Coding region SNPs
- County region SNPS

Blood	Semen	Saliva	Vaginal Secretions	Menstrual Blood	Skin	Housekeeping Genes
ALAS2*	PRM1	HTN3*	MUC4	MMP7	LCE1C*	B2M*
SPTB	PRM2*	STATH*	HBD1	MMP10*	LCE1D	UBC
MBS (PBGD)	MSP	PRB4	ESR1	MMP11	LCE2D	UCE
CD3G	TGM4*	SPRR3	CYP2B7P1*	CK19	CCL27*	GAPDH
HBB	PSA (KLK3)	SPRR1A	MYOZ1	PR	IL1F7	G6PDH
CASP2	SEMG1	KRT4	FUT6	LEFTY2*	LOR	TEF
AM1CA1	SEMG2	KRT6A	DKK4	MSX1	CDSN	
C1QR1		KRT13	SFTA2	SFRP4	KRT9	
ALOX5AP		MUC7	IL19*		CST6	
AQP9			Lcris		DSC1	
C5R1			L.gas			
NCFS2			L.jen			
MNDA						
ARHGAP26						
GYPA						
ANK1*						
HBA						

12

MPS: BFID/Organ Tissue Assays

CE versus MPS

-Limited multiplex capability (some multiplexes in use require three separate amps) -Quantitative analysis more challenging (rfu versus counting of transcripts) -No access to complete sequencing information -However, CE more sensitive than NGS

Targeted RNA-Seq BFID

Body fluid

• "Off the shelf" Illumina MiSeq BFID 33plex (6 body fluids) (Hanson et al 2018)

• Bespoke Life Technologies Ion S5/Chef 36 plex (6 body fluids) (Hanson et al 2023 Organ tissue • ORGAN 46plex Illumina MiSeq (10 organ tissues) (Hanson et al 2017)

NATIONAL CENTER

34

The cell is a bag of RNA (Stephen Quake 2021)

- RNA profiling can identify with a high degree of specificity the cellular
- phenotypes of the biological material yielding crime scene DNA profiles Genomic information is directly encoded and faithfully reproduced in mRNA
- transcripts. MPS technology enables this genomic encoded RNA sequences to be accessed.
- Direct association of common body fluids with DNA donors in mixtures can be accomplished via cSNP sequencing analysis
 - -cSNPs represent an additional class of SNPs useful in forensic genetics (in addition to Identity, Ancestry, Lineage Marker and PhenotypeSNPs) - cSNPs are an addition to the DNA mixture deconvolution toolbox - movement towards increasing #RNA-SNPs towards human identification?
- Access to the RNA and DNA cSNP assay primer pools and analysis software should be made available in the near future via ThermoFisher Community Panels

.

Robert Lagacé

Chantal Roth

1. Can there be added value to a DNA profile?

3. Assigning body fluids to DNA donors by cSNP typing

2. Cellular phenotyping by RNA profiling

Conclusions

Erin Hanson UCF

Acknowledgements

The author would like to thank all students past and present who have worked on RNA profiling during the past 20 years, on funding agencies who have believed in the technology (NIJ, DoD, FBI) and on productive and fun international collaborators, especially Cordula Haas' group at the University of Zurich.

Relevant Grants and Awards

Messenger RNA Profiling: A Prototype Method to Supplant Conventional Methods for Semen Identification FBI JFB103287/A3C0328700 (UCF 11-64-6021) (2003-2005)

Who and How: Comprehensive RNA-based BodyfluID Assay to Provide Context to a Recovered DNA Profile Department of the Army W911NF-16-2-0018 (2012-2014)

How it got there: associating individual DNA profiles with specific body fluids in mixtures using targeted digital gene expression and RNA-SNP identification National Institute of Justice 2014-DN-BX-K019 (2015 -2017)

Human Organ Tissue Identification by Targeted RNA Deep Sequencing to Aid in the Investigation of Shooting and Other Traumatic Bodily Injury Incidents National Institute of Justice 2016-DN-BX-0165 (2017-2019)

Comparative Assessment of Emerging Technologies for Body Fluid Identification National Institute of Justice 2020-DQ-BX-0015 (2021-2023)

Transfer, Persistence and DNA Source Attribution of Trace Biological Material in Digital Penetration Assault Cases National Institute of Justice 15PNIJ-21-GG-04147-RESS (2022-2024)

Carbon reasonant instance of usable in private index of the reasonant of the second se

