A Demonstration of the AVITI Element Sequencer and the NimaGen OmniSTR kit

1

George Duncan, Brian Young, and Scott Tighe

7/24/2024

Why ask a new question?

- A first demonstration of the combination of two NEW technologies: 1) reverse complement PCR used in the OmniSTR kit, and 2) Polony sequencing used in the AVITI Element.
- This is a first look at the combination of these two technologies
- These are NOT optimized data and a first run of the two together
- This is a peek over the horizon?

4

Element AVITI™ FIT

Empowering More Researchers with Flexible Genomic Solutions

ΛΥΙΤΙ

Unparalleled performance with throughput from 100 million to 2 billion reads

Lower barrier to entry with access to industry-leading accuracy

Cloudbreak[™] Flow Cells Enable Any Application at Any Scale

Scale sample batching, extend read length, or run targeted panels

- A Phred quality score is a measure of the quality of the identification of the <u>nucleobases</u> generated by automated <u>DNA</u> <u>sequencing</u>
- Q = -10log₁₀(Probability of error) (base call being wrong)
- The HIGHER the Q scores indicate smaller probability of error

	Phred Quality Score	Probability of incorrect base call	Base call accuracy
10		1 in 10	90%
20		1 in 100	99%
30		1 in 1000	99.9%
40		1 in 10,000	99.99%
50		1 in 100,000	99.999%
60		1 in 1,000,000	99.9999%

Bode Technology Utilizing AVITI for FIGG

Accredited to ISO 17025 standards

- Operational in casework for WGS/FIGG
- High-quality data capable of achieving an unprecedented >90% Q30 data quality on 2 X 150 base pair runs
 - Routinely see Q-scores >Q40 (99.99% accuracy) and pushing Q50
- Amenable to the wide variety of library prep kits commercially available
- Overcomes high DI values and low template amounts
- Instrument cost and maintenance lower than other WGS platforms
 - Two parallel runs or independent operation with multiplex capabilities

Courtesy of Bode Technology

One of the main benefits is reduced requirements

Arslan, S., Garcia, F. J., Guo, M., Kellinger, M. W., Kruglyak, S., LeVieux, J. A., ... & Previte, M. (2024). Sequencing by avidity enables high accuracy with low reagent consumption. *Nature biotechnology*, *42*(1), 132-138.

AVITI 2 x 300 Kit Provides Leading Data Quality

Measuring quality and accuracy: Element Cloudbreak 2 x 300, Illumina NextSeq 2000 600-cycle

End-to-end Read Quality

Superior Q-values throughout the length of reads with a significant increase in base call accuracy

Variant-calling Accuracy

Greater than 50% reduction FP/FN rate with significantly higher SNP accuracy

PCR-free Elevate and Illumina fragment libraries for HG001 human control DNA generated using standard protocols. Elevate library sequenced on four separate runs at Element Biosciences; Illumina library sequenced twice via service provider. QC metrics from Illumina runs passed or exceeded specifications. Q values processed using GATK BaseRecalibrator and mean value across replicates plotted across paired reads for both platforms. Data from both platforms aligned and variant-calling performed using Google DeepVariant pipeline. Total errors plotted and binned by error type.

Newer Technologies are Reducing Costs

Parameter	Kit		
	MiSeq 600 v3	Element	
Samples/Run	32	96	
Flow Cell	\$1,720	\$2,400	
OmniSTR kit and Plate	\$3,325	\$3,325	
Cost/Sample	\$158	\$60	

Table 1 Maximum number of libraries

Primer Mix	Sample Type	MiSeq FGx Reagent Micro Kit	MiSeq FGx Reagent Kit
DPMA	Database or reference	36	96
	Casework	12	32
DPMB	Database or reference	12	32
	Casework	12	32

More Capacity Means Better Detection of Low-Level Contributors

Deremeter	Expected Number of Reads		
Parameter	MiSeq	Element	
Flow Cell Capacity	25,000,000	100,000,000	
Samples/Run	96	96	
Reads/Sample	260,417	1,041,667	
Markers/Kit	30	30	
Reads/Sample/Marker	8,681	34,722	
Alleles/Marker	2	2	
Reads/Allele (NOC=1)	4,340	17,361	
NOC/Sample	2	2	
Reads/Contributor/			
Allele	2,170	8,681	
Lowest Locus As a Pct. Of	0.5	0.5	
Mean Reads	4 005	4.040	
Reads per Lowest Allele	1,085	4,340	
	10.1	10.1	
Contribution Ratio	10:1	10:1	
Reads/Lowest Locus in Lowest Contributor	217	868	
Verogen Recommended	650 Reads/	'Locus	
Minimum Thresholds	1.5% of Reads/Allele (10 Reads)		

IDseek[®] MPS Library Prep by RC-PCR: How does it work?

Nima**Gen**.

- Reverse complement PCR GREATLY reduces the amount of labor involved with library preparation
- All reagents come in a 96 well plate (can be separated apart for less samples processed) IT MAKES IT OWN PRIMERS AND LIBRARY ALL ON THE PLATE.
- The kit is better balanced than previous kits.

- Sensitive: 100% of markers called down to 60pg DNA.
- Marker balance optimized for 1ng with limited impacts on low inputs down to 60pg.
- High on-target read percentage, even with low input, reducing sequencing costs.
- Robust and inhibitor tolerant, tested for humic acid, tannic acid, indigo, hematin and bacterial DNA.

Inter Locus Balance As Measured by Kullback-Leibler Divergence From an Ideal Balance

Comparing MPS workflows versus CE

IDseek[®] Multiplex STR Kits for MPS

Powered by Reverse Complement PCR

RC-PCR based MPS library prep with its single reaction, closed-tube workflow adds:

- Reduced hands-on time
- Minimized risk of sample swapping, PCR contamination and pipetting errors
- ✓ Reliable results, safer and easier
- Unique Dual Indexing in the very first step of the library prep (Early Indexing)
- High sensitivity and specificity due to the specific reaction kinetics of RC-PCR

Proof of Principle Testing

Experimental Design

- Samples were prepared at NimaGen (Nijmegen, Netherlands). A custom library preparation method was used to incorporate AVITI Element barcodes.
- Sequencing was performed at VIB Nucleomics Core (Leuven, Belgium).
- Data analysis was performed at NicheVision (Akron, Ohio). AVITI Element barcodes were trimmed, and analysis was performed using MixtureAce software.

Samples Used in Proof of Principle Testing					
Sample	Description	Source			
NA12877	Female	1000G/CEPH			
NA12878	Female	1000G/CEPH			
NA24631	Male	NIGMS			
2800M	Male	Promega			
	Sample NA12877 NA12878 NA24631 2800M	SampleDescriptionNA12877FemaleNA12878FemaleNA24631Male2800MMale			

	Samples in Triplicate				Total	
_	Single Source	3:1 mixture	10:1 mixture	NTC	Samples	
	А	A:B	A:B			
	В	B:C	B:C			
	С	D:B	D:B			
	D					
Total	12	9	9	1	31	

Mix BC 10:1 (NA12878:NA24631) LOD = 3%; 325 reads/locus

Allele from Minor Contributor

