How a Modified Algorithm and Small SNP Set can be used for Fast and Accurate Extended Kinship Estimation

Melissa Kotkin

Sr. Global Product Manager

Workflow for Kinship Estimation

What is Forensic Investigative Genetic Genealogy (FIGG)?

Application of genetic genealogy to investigations to generate leads in criminal cases or identify remains Gained notoriety in 2018 with the arrest and subsequent conviction of the Golden State Killer – Joseph DeAngelo Verogen acquired GEDmatch in December 2019

- To secure its future and further empower its use for public genealogy research
- To improve utility, oversight and governance of forensic and missing persons comparisons
- To create a workflow specifically designed for forensic samples and forensic laboratories

GEDmatch users choose when uploading their profiles whether or not to permit their data to be used for criminal case comparisons

Forensic/Law Enforcement Comparisons governed by strict terms of use and privacy policies

- All forensic and missing persons comparisons conducted via a dedicated portal GEDmatch PRO
- Forensic case comparisons permitted only for violent crime and evidence profiles can be compared against opted in data only
- Comparisons to identify human remains for missing persons cases can be compared against the entire GEDmatch database

FIGG Workflow Overview

	Number of Upload Credits: 3 Law Enforcement Hi Verogen UPLOAD YOUR DNA PRO TOOLS ^ YOUR KITS YOUR PROJECTS
View Ec Featured One-to-Many GEDmatc This is your GE you are a work	Admixture (Eurogenes/K13) Comparison Are Your Parents Related? One-to-One Q Matching Multiple Kit Analysis Segment Search One-to-One Autosomal DNA Triangulation
Your Kits	View All Kits Upload New Kit +
Kit number ↓ Status	Alias Case name Shared with O person(s) : One-to-Many
DL9837403 FD8613399 FH8365694	0 person(s) : One-to-One Autosomal DNA Comparison 0 person(s) : One-to-One Q Matching
JY3168787 KX6839261	0 person(s) : Segment Search
NX2932314	0 person(s) Triangulation

 View Legend (Status Your Projects 	Indicators shown to the right of each kit below) View All Projects Create New Project +				Educational resources Forensic Genetic Genealogy webinar on
Q Search		\supset			demand: An Emerging Game Changer for Cold Case Resolution
Project title	Your status	Project Owner	Contributors		
test project	✓ Active	Verogen Administrator	1 people	:	
Test project #2	✓ Active	Verogen Administrator	1 people	:	
Project verogen	Active	Verogen Administrator	1 people		

Choosing the Right Approach

STRs alone allow traditional kinship analysis that only reach direct (1st degree) relatives with any certainty

STRs and identity SNPs can reach 2nd and some 3rd degree relatives

Higher density, targeted SNP sets offer the chance to reach 3rd, 4th, and 5th degree relatives where direct references are no longer accessible or available

Mitochondrial DNA offers maternal lineage information to supplement autosomal data or as a lower power option

Simplified DNA Painter structure

Kintelligence | Explore and establish genetic connections

ForenSeq MainstAY Kit

Autosomal & Y STRs

ForenSeq DNA Signature Kit

STRs & SNPs

For short-range and complex STR-based kinship analysis

A choice of STR kits to meet specific application requirements

Compatible with traditional reference databases

ForenSeq Kintelligence Kit

X SNPs (106)

Y SNPs (85)

Kinship SNPs (9867)

Identity SNPs* (94)

Phenotypic SNPs* (22)

Ancestry SNPs* (56**)

End-to-end workflow designed specifically for long range kinship analysis including Forensic Genetic Genealogy

Works in harmony with the GEDmatch database to reach 2nd cousins

Minimizes data privacy concerns by excluding medically relevant targets

Optimized for performance on low input and degraded samples

UAS: Kintelligence Analysis Module

Choosing the Right Kit

Key Considerations

Is nuclear DNA available?

What relationship do you need to reach?

How many samples do you need to run?

How many kits and data types do you want to manage?

What in-house data storage and kinship analysis capability do you already have?

Example Data | Pedigree Analysis – CE vs MainstAY

Example Data | Pedigree Analysis – CE vs MainstAY

To FIGG or not to FIGG? (And how...?)

Which Method, When & Why?

Comparison of Array-Based and Sequencing-Based Methods

Study Design

DNA degradation series on a blood sample

DI range:* 1 to 460

1 ng DNA input DNA for Sequencing

0.7 to 3.5ng input DNA for Microarrays (4ul input volume)

Results

Array - steep decline in SNP call rates at relatively low levels of degradation. Call rates below 75% typically lead to uninformative genealogy matches in operational settings

Kintelligence – 98.8% average call rate with most degraded sample (DI: 460) giving a call rate of 95.6

■ Array ■ Kintelligence

* DI: InnoQuant[®] Human DNA Quantification & Degradation Assessment Kit

Why a 10K panel?

- How do we improve performance for degraded/low input samples?
 - Targeted panel with small amplicon insert sites means that the sensitivity per SNP will be significantly higher than WGS and microarray
- How can standard Forensic Labs to process their own samples?
 - Keep number of SNPs targeted small, thus validated MiSeq FGX system can be used
 - Costs lower than WGS
- How can data be compared to existing microarray/WGS databases?
 - Build a new algorithm based on existing methods for calculating kinship coefficients

Kintelligence | Forensic SNP Selection Methodology

Kintelligence Panel Design

- Able to amplify large set of SNPs with extremely degraded samples
- Maximize panel value by using SNPs with minimal linkage and high variability in the populations

Segment vs. Non-segment based Comparisons

QIAGEN

Segment (Traditional)

- Relies on DNA between SNP locations on a chromosome
- Uses data from WGS (Billions of SNPs) and Microarray (650,000 2,500,000 SNPs)
- To understand most likely relationships, evaluates:
 - Number of shared centimorgans Genetic distance; size of matching DNA segments in autosomal DNA tests
 - Average segment length and longest segment across matches

Non-segment (Kintelligence)

- Does NOT rely on overlap between long, contiguous segments to compare kits and generate match
- One-to-Many Kinship tool

Verogen Method I Kinship estimation

yields a simple measure of relatedness.

- PC-Air
 - Accounts for relatedness in population to provide ancestry estimations
 - Identifies mutually unrelated kits that are maximally ancestrally diverse

PC-Relate

- Estimate measures of recent genetic relatedness in samples with an unknown or unspecified population structure without reference population allele frequencies, even when endogamy or consanguinity are present.
- Identifies ancestry-representative PCs that adjust for family structure and generate relatedness estimates as kinship coefficients in the presence of population structure, admixture, and departures from the Hardy-Weinberg equilibrium.

Windowed kinship

Calculates kinship Coefficient across regions of the genome in order to identify related segments

Why 10k SNPs?

Pedsim simulated relationships from 1000 genomes using windowed kinship

- More SNPs means more read coverage to call them reliably
- Maximize results while minimizing chances of drop out with reasonable plexity on the MiSeq FGx

- Assume GEDMatch segment matching is the "gold standard"
- Create "Kintelligence" kits using subset of SNPs from GEDMatch
- Create random dropouts in order to simulate performance with missing data

				GGG-Grandparent 0.0194 -0.0032 ~ 0.0590						GGGG-Aunt / Uncle 0.0107 -0.0064 ~ 0.0313
				GG-Grandparent 0.0336 0.0083 ~ 0.0766					GGG-Aunt / Uncle 0.0189 -0.0016 ~ 0.0462	
Half GG-Aunt / Uncle 0.0181 -0.0009 ~ 0.0410				Great- Grandparent 0.0645 0.0229 ~ 0.1100				GG-Aunt / Uncle 0.0340 0.0069 ~ 0.0645	1C3R 0.0107 -0.0064 ~ 0.0313	
Half 1C2R 0.0107 -0.0064 ~ 0.0313	Half Great-Aunt / Uncle 0.0337 0.0064 ~ 0.0660			Grandparent 0.1265 0.0761 ~ 0.1735			Great-Aunt / Uncle 0.0646 0.0300 ~ 0.1041	1C2R 0.0187 -0.0009 ~ 0.0444		
Half 2C1R 0.0067 -0.0094 ~ 0.0254	Half 1C1R 0.0173 -0.0040 ~ 0.0420	Half Aunt / Uncle 0.0639 0.0284 ~ 0.1038		Parent 0.2507 0.2376 ~ 0.2653		Aunt / Uncle 0.1265 0.0898 ~ 0.1650	1C1R 0.0341 0.0089 ~ 0.0647	2C1R 0.0107 -0.0064 ~ 0.0313		
	Half 2C 0.0107 -0.0064 ~ 0.0313	Half 1C 0.0329 0.0080 ~ 0.0637	Half Sibling 0.1257 0.0878 ~ 0.1707	Sibling 0.2509 0.1957 ~ 0.3083	Self 0.5002 0.4843 ~ 0.5144	1C 0.0647 0.0329 ~ 0.1019	2C 0.0185 -0.0016 ~ 0.0414			
	Half 2C1R 0.0067 -0.0094 ~ 0.0254	Half 1C1R 0.0173 -0.0040 ~ 0.0420	Half Niece / Nephew 0.0639 0.0284 ~ 0.1038	Niece / Nephew 0.1265 0.0898 ~ 0.1650	Child 0.2507 0.2376 ~ 0.2653	1C1R 0.0341 0.0089 ~ 0.0647	2C1R 0.0107 -0.0064 ~ 0.0313		2C2R 0.0067 -0.0094 ~ 0.0254	
		Half 1C2R 0.0107 -0.0064 ~ 0.0313	Half Great-Neice / Nephew 0.0337 0.0064 ~ 0.0660	Great-Niece / Nephew 0.0646 0.0300 ~ 0.1041	Grandchild 0.1265 0.0761 ~ 0.1735	1C2R 0.0187 -0.0009~0.0444				
		Half 1C3R 0.0067 -0.0094 ~ 0.0254	Half GG-Aunt / Uncle 0.0181 -0.0009 ~ 0.0410	GG-Neice / Nephew 0.0340 0.0069 ~ 0.0645	Great-Grandchild 0.0645 0.0229 ~ 0.1100			3C 0.0067 -0.0094 ~ 0.0254		
				GGG-Niece / Nephew 0.0189 0.0003 ~ 0.0462	GG-Grandchild 0.0336 0.0083 ~ 0.0766	1C3R 0.0107 -0.0064 ~ 0.0313				
					GGG-Grandchild 0.0194 -0.0032 ~ 0.0590					

Each value above represents a Kinship coefficient; it's mean then min-max range.

1st degree relation
 2nd degree relation
 3rd degree relation
 4th degree relation
 5th degree relation
 6th degree relation
 7th degree relation

Close relatives Distant relatives

Shared cM ranges, 3rd degree example

Large range of shared cM even for same degree. **Close relationships** will be 3500 – 700 shared cM **Distant relationship** will be 700 – 100 shared cM

https://dnapainter.com/tools/sharedcmv4

Kintelligence Algorithm Performance – Close Relatives

Kintelligence Algorithm Performance – Distant Relatives

Close relationship summation

QIAGEN

Near perfect sensitivity and specificity with >=2000 SNPs for 1st and 2nd degree Near perfect sensitivity and specificity with >=4000 SNPs for 3rd degree

Distant relationship summation

Near perfect sensitivity and specificity with >= 8000 SNPs for 4th degree

- Can't achieve perfect sensitivity for 5th degree
- 8000 SNPs = 94.2% max sensitivity
- 10000 SNPs = 94.6% max sensitivity
- Considerations for 5th degree results:

We're using GEDMatch as our gold standard and considering a 100 cM hit as real without any manual curating. There may be "5th degree" hits that aren't actual relationships

Loss of Heterozygosity

■ Degree 1 ■ Degree 2 ■ Degree 3 ■ Degree 4 ■ Degree 5

- Create "loss of sister alleles" by switching het calls to hom calls
 - Thus, at 5%, 2.5% of the het calls go to hom alt and 2.5% go to hom ref
- Using GEDmatch Pro high confidence thresholds

- Kintelligence targets only the DNA required to support most identifications
 - Made for forensic samples
 - Can be performed in-house

 The kinship algorithm applied to data generated using 10K SNP multiplex supports near perfect detection of relations extending to 3rd degree with a high degree a specificity even with reduced locus call rates and sister allele dropout.

Thank You

melissa.kotkin@qiagen.com

Special thanks to:

- June Snedecor
- Tim Fennell
- Seth Stadick
- Nils Homer
- Joana Antunes
- Kathryn Stephens
- Cydne Holt

	Contents lists available at ScienceDirect Forensic Science International: Genetics	
ELSEVIER	journal homepage: www.elsevier.com/locate/fsigen	
Research paper Fast and acc database sea	urate kinship estimation using sparse SNPs in relatively large rches	Check for updates
June Snedecor Kathryn Stephe	^{,*} , Tim Fennell ^b , Seth Stadick ^b , Nils Homer ^b , Joana Antunes ^a , ns ^a , Cydne Holt ^a	
^a Verogen. Verogen Inc., 12 ^b Fulcrum Genomics, Fulcr	111 Flintkote Ave, San Diego, CA 92121, USA m Genomics LLC, 1840 Folsom St Suite 304, Boulder, CO 80302, USA	

Forensic Science International: Genetics 61 (2022) 102769