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Overview

*  Why are we interested in single cells (sc)?
 Stutter in sc

* Characterizing sc Stutter

* Predicting multi-cell stutter

Questions

*How does stutter manifest when one diploid copy is present?
—Does it behave differently than bulk sample amplification?
—What level can we expect and what is the variance?

—How often does it occur?

—Repeat type: simple vs compound vs complex

—Locus-specific characteristics

*Can we use this information to help bulk sample analysis?

—At what DNA quantity can we expect to see variability stabilize
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Why Single Cells?

@ @ lp

Cell-type known

profile)

v Profile can be traced back to the specific cell

No NOC or mixture interpretation

Use to condition mixed profiles

One cell...one donor - High resolution

v Assumptions can change (bulk vs. single cell)

v" Answers = source (cell type) and sub-source (DNA
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Separating cell types

; * Replace Dift?
Created with BioRender.com * Low-level male Component
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Applications: Random sampling to improve mixture ratio
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Single Cell Analysis in Forensic Science

Publications in each year. (Criteria: see below)

16
14
90
12 80
70
10

?

Publications in each year. (Criteria: see below)

STRmix pubs

4 » 20
10

2 ¢
o
S

[

O XD O > OO D D © O N O e Publications (total)

F F PP F HFF S K NN

LT TS T S S s

B A S R R N A S
FTEFES S S S

%2,

-e- Publications (total)

Source:h
Exorted
Crteria: Torens

amension
4

ND “singl cel i

Syracuse University | College of Arts & Sciences | Forensicsand National Security Sciences Institute

Single Cell Publications — Across fields
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...Single cell analysis is a ...thing.

The conceptual power
of single cell biology
August 28-30, 2023 — San Diego, CA, USA

Cell

Symposia

Single-Cell Genomics
Gordon Research Conference

%

Single Cell Analysis

June 27 - July 13, 2024

SINGLE CELL GENOMICS 2023

October 9-11, 2023

Engelberg, Switzerland

m) National Institutes of Health
Office of Strategic Coordination-The Common Fund

Single Cell Analysis Program (SCAP)
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Single sperm cell
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How does it fit into the current process?

Sample
Collection DNA Quant Detection
DNA PCR Interpretation
Extraction
13
How does it fit into the current process?
Single cell
recovery qPCR Not needed?!
Sample
Collection DNA Quant Detection
DNA PCR Interpretation
Extraction
Adjust
assumptions
14
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Single Cell Analysis Overview
How to interpret single cell data

What are the assumptions and how are these different than multi-cell?

v Assumption 1: One cell, one contributor
v Assumption 2: Heterozygote balance > 2 alleles at a locus = homologous pair

v Assumption 3: Stochastic — if a single allele is detected above threshold = assigned to single donor

Vhhp vihdv|thgrxjks
(CNCNS)

* Allele and locus dropout are expected (the norm)

*  How do artifacts manifest in the data?

15

9

Continue “writing the book on biology...’

* There 1s still much to understand

*We have observed patterns and created models
and to account for uncertainty...

—How much of the uncertainty is because we don’t
understand the mechanism fully?

*Deep dive into sc stutter

16
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* Determined for samples with high levels of DNA (0.25ng -1.00ng)

overestimating stutter

* More precise stutter detection = more accurate profile interpretation

» Static, locus-specific, (LUS)-specific models [1-4], Probabilistic Genotyping [5]

‘ removal of a true allele

underestimating stutter

misclassification of a stutte
product as a true allele [6,7]
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https://assets.thermofisher.com/TFS-Assets/LSG/brochures/cms_078314.pdf

General Methods and Workflow

Targeting and Recovery
(DEPArray™ NxT)

DNA Extraction
(DEPArray™ LysePrep Kit)

Amplification

(PowerPlex® Fusion 6C System)

Detection

(ABI Genetic Analyzer 3500xL)

Analysis
(Osiris 2.16 AT=20RFU)
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Characterizing

Single Cell Stutter
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Methods

* How does stutter in single cells manifest?

* Focus: n-1, nt+1 and n-2
—Obligate stutter products = only explanation is specific type of stutter

* “Sample size” = 180 cells (41 WBCs, 139 buccal epithelial cells); 6 contributors
—29 cycles n=125; 30 cycles* n=41

: stutter PH
Stutter ratio SR = true allele PH (eq. 1)
Stutter frequency SF — number of stutter occurences (eq 2)

number of true alleles

*D.R.L. Watkins, D. Myers, H.E. Xavier, M.A. Marciano, Revisiting single cell analysis in forensic science, Nature Scientific Reports 2021 11:1 11 (2021) 1-12. https://doi.org/10.1038/s41598-021-86271-6.
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Additional terms

* St, — total stutter
— all possible stutter events

— this includes when stutter does not occur

* St, — all positive stutter present

—1.e., all non-zero occurrences of stutter

—Used to answer question : When stutter occurs what can be expected

Syracuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute
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n-1 (29 cycle) stutter

° St, (all positive stutter)
- Range: 5.67% t0 56.92 % + 23.72
- Min: PentaD (n=111) — only one observed stutter peak
- Max: D8S1179

e St (all possible stutter events, whether present or absent)
- Range: 0 to 14.56 £ 15.90
- Min: TPOX and PentaE
- Max: D3S1358

*  When it happens...it is high

Locus Repeat St, St,
structure mean stutter (%) mean stutter (%)
D3S1358 simple 43 14.56 +15.90 21.60 + 14.90
D1S1656 complex 133 10.27 + 12.64 21.17+9.89
D2S441 simple 68 1.80+6.97 20.38 + 14.00
D10S1248 simple 105 6.24 +14.25 19.71+£19.52
D13S317 simple 93 1.92+6.16 16.27 +9.61
PentaE simple 111 0.00 NA
D16S539 simple 131 6.34+13.33 26.84 +14.26
DI18S51 simple 128 5.08+9.83 22.15+6.38
D2S1338 compound 138 7.30 +15.24 32.01 +£15.08
CSF1PO simple 103 2.14+8.62 23.26 + 18.66
PentaD simple 104 0.05+0.56 5.67
THO1 simple 187 0.27+2.95 25.66+17.71
vWA compound 145 324+11.75 35.41+19.68
D21S11 complex 149 4.60+10.63 25.21+9.94
D78820 simple 85 2.85+12.30 34.58 +28.94
D5S818 simple 41 423+8.15 17.97 +5.60
TPOX simple 45 0.00 NA
D8S1179 simple 100 517+ 17.79 56.92 +23.72
D12S391 compound 126  10.31+20.44 37.28 £22.54
D19S433 simple 47 4.75+12.82 27.90 + 18.50
SE33 simple 76 2.89 +10.08 27.43+17.87
D22S1045 simple 36 2.98+10.02 26.79 +17.90
DYS391 simple 47 6.87 + 18.57 32.27+29.29
FGA complex 133 7.42 +£13.55 22.62+14.71
DYS576 simple 38 3.19+11.24 30.28 £21.54
DYS570 simple 27 5.75+£9.98 19.40 +8.19

Syracuse University | College of Arts & Sciences| Forensics and National Security Sciences Institute
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St, n-1 (29 cycle)

* Generally, as locus size
increases stutter decreases

Stutter ratio

14

12

10

od
o

o
o

0.4

Al Al LlA A

e

PPN R D PL T E DL IS PP DD PEF PO
& & PG G DD ERE P HEL DS P O AN S
S o8 A B Y g g N & G & &
Sty QNQ"’ T EFFEE P F PP o.;f’ & ;&

Stt violin plots, 29 cycles, n-1 stutter. Distribution of n-1 stutter ratios of all possible occurrences of
stutter across loci (by channel) when amplified using 29 cycles.
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St, n-1 (29 cycle)

* Generally, as locus size
increased stutter
decreases

* THO1, D8, D22

—High stutter when it
occurs...more frequent

Stutter ratio
=3 o (= (=] - =
v Y & ® > v
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Stp violin plots, 29 cycles, n-1 stutter. Distribution of n-1 stutter ratios of all positive

occurrences of stutter across loci (by channel) when amplified using 29 cycles.
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Stutter Ratio >..... n-1 (29 cycle)

* 2439 instances of possible stutter w
- 13% (> Sg=15%)
- 6.2% (> Sg=25%) : B g
~ 1.4% (> Sg= 50%) : ﬁ\ ,ﬂ\
* Equal to or greater than the stutter causing peak? | / w ;’ | .
- 0.2% (5/2439) *ﬁ Cpt AL fn
= DI10S1248 locus Sg=107%, S S A

= FGA Sz=100%,
= DYS391 Sg=111%,
= two observations at D12S391 Sy=100% and Spz= 102%

Syracuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute
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Where’d the true allele go?

*N-1 (29 cycles)

*D12S391

* expected genotype
- [15,20]

—14 peak is the observed
stutter at this locus

26

13



Promega PPFoc stutter vs. sc Stp
n-1 (29 cycle)
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° Promega data based # Promega mean stutter (%)
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n+1, n-2 (29 cycles)

*n+l
—St, range 14.02% to 81.48%
—14/26 loci had no n+1 stutter observed
—not observed in both PentaE or PentaD (n=111 and n=104, respectively)
—one instance of a stutter peak of 172% at THO1 was observed
°n-2
—St, range —8.64% to 86.67%
—10/26 loci had no n-2 stutter observed
—PentaE and PentaD did have 1 occurrence each of n-2 stutter
—no instances of a stutter peak over 100% observed

28
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30 cycles

* n-1 at 30 cycles,
- St, decreased 29 cycles 26.20% to 19.16%, at 30 cycles

— PentaD and PentaFE did exhibit stutter, but stutter was present at the lowest percent and frequency compared to all other
loci.

— No stutter was observed at 30 cycles at D13S317.
— A one-way ANOVA (¢=0.05) - evaluate the locus-specific stutter at 29 and 30 cycles
= indicate that cycle dependent variations in stutter percentages are largely not statistically significant (18/26 loci),
= Significant differences were observed in 8 loci: D1S1656 PentaE, D16S539, D18S51, THO1, vWA, D21S11, TPOX
and FGA

* n-2 and n+1
—29 and 30 cycles were similar (no ANOVA)
- St,
= n-2 stutter rate across all loci: 29 cycle: 36.15% 30 cycles: 13.72%.
= n+1: 29 cycle: 29.29% and 30 cycles 14.38%

Syracuse University | College of Arts & Sciences | Forensicsand National Security Sciences Institute 29
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Frequency of stutter (sc) —

29 and 30 cycle

Average A 223.6 + 14.8%

>50% : D1, DY576,D16
D13 >decreases 12%

* Average A-> 0.35 +2.33%

Max increase - D3 (6%)

Average A> 1.65 = 3.09%

* Range * Range * Range
— — 29 cycles> 0% to 67% : - 29 cycles> 0% to 5% N - 29 cycles>0-5%
=i — 30 cycle=>0% to 94% = 30 cycle>0% to 6% = - 30 cycles>2-11%

Max increase - D19 (10%)

cycle, stutter type

67

31 a2 68 62 [

QO > & D 3+ ] ¥
‘5,‘) a;»é){? & 6";,;\@0 é"?’ 03 c@‘("‘o @0‘,\‘\&'1,‘? ,30 AN ‘aq é?’ > ..,q QO
F & ® ;NG &
locus

100%

75

Frequency

30
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Single cell stutter to

inform multi-cell m@%’“ym vs. ;ﬁﬂﬁzm
analyses s \ A

Created with BioRender.com

Methods — resampling (1 of 2)

* Question: At what point does variance normalize, stutter peak height become more
predictable, and large “swings” in stutter are not observed?
* Resampling - Overall, repeat type and individual
—1 thru 10, 15, 20 and 50 cells (29 cycle only) - 5000x

— Estimating the mean stutter and variance for cell counts ranging from

— ANOVA (0.= 0.05) and the post-hoc Tukey’s: evaluate the statistical sig. between each simulated cell grouping

* Based upon the following assumption
—a single DNA template strand - grow exponentially by a power of two during the PCR process —

= i.e., the total number of resulting strands for x number of cycles for a single template strand will be equal to 2%
and the total number of DNA strands in # number of cells for those x number of cycles

32
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Methods — resampling (2 of 2)

* Given a set of parent/stutter peak pairs from single cell stutter data, P = {p,,p,, ..., p,,} and S = {s,,8,, ..., 5.},
where p is a single parent peak height RFU value, s is a corresponding stutter peak height value and m is the
number of parent/stutter peak pairs in the experimental data set

* Resampling can be performed from this initial set through randomly selecting parent/stutter peak pairs (k),
where k ranges from 1 to N, to simulate N new “single cell” samples . This process can be repeated ¢ times
(where ¢ represents the number of cells being simulated) and the resulting peak heights summed to estimate
parent and corresponding stutter peak heights for ¢ starting cells for the & sample in N simulated
amplifications:

c

PH, = Z Pk;j (eq. 4)
j=1

PH; = Skj (eq.5)

¢ where PH, and PH, are the estimated parent and stutter peak heights. These peak heights can then be used to
estimate stutter ratios for an amplification of ¢ number of cells.

Syracuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute

Let’s simplify...
*Sc data - generated many stutter and
parent peak combination
¥

“Randomly selected these pairs
depending on # of cells

33

—To generate 3 cell samples = select 3
stutter/parent pairs and add them

*“Ideal” PCR model

34
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n-1 — locus wide

0.06 Variable
e | —* Mean
RN S L o e i T - - - Variance
0.05 =
L Chart of delta variance across changing number of cells
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= |
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g 0.03 |
= o -0.0004
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* Most significant 122 umberoteets
* At ~7 cells variance appears to normalize
Syracuse University | College of Arts & Sciences | Forensicsand National Security Sciences Institute 35
35
But not all loci are created equally
D16S539 Interval Plot of Stutter, Variance SE33 Interval Plot of Stutter, Variance
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* Locus-wide

* Summary of ANOVA and Tukey's
test (a=0.05)

*3 primary groupings
* Stabilization of stutter 2 5-7 cells
—33 —46pg (0.033ng — 0.046ng)

n-1 (29 cycle): Hierarchical clustering

[ ]

6 cells

5 cells

—{

1 cell

N-1 Hierarchical clustering dendrogram of cell numbers across all loci combined

37

b
1
Disiass compound
D2251045
D75820
VIVA complex
DYS576
DgSS?S

FGA Complex
’51338 compound

n-1 (29 cycle) hierarchical clustering of loci at 1 cell

* ANOVA and Tukey’s test were performed on 1
cell simulated data to show any potential
clusters or similarities across loci.

* 4 primary groups

—On going work to characterize the
relationship

38
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Stutter ratio
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n-1 (29 cycle): by repeat type
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* Complex and compound >>> simple

* A variance remains consistent to
observed pattern
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n-1 (29 cycle): hierarchical clustering by repeat type

1 cell

complex

* Summary of ANOVA, Tukey’s test result

10 cells 7 cells I
y il 5cells ——= 6 cells —
celis 8cells ’_ﬁ 5 cells
5 celis 10 cells
4 cells
4 cells
S

2cells

1 cell

20

1 cell

compound simple

40
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n+1 (29 cycle)

* Absent (generally) — asymptotic incline
*n+1 Sg higher in simple than complex and compound
* Generally - stabilization of variance at 3 cells

; 0:0057 Variable
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* Horwitz curve—> stochasticity is expected, and we do see high levels of stutter
* Stutter can be high when it occurs
— n-1 stutter in sc does not match the expectations according to developmental validation

* Generally, as locus size increases stutter decreases
* n-1 stutter in sc does not match the expectations according to developmental validation
* Over 23% increase in frequency of stutter 29 to 30 cycles
* Single cell to multi-cell

—n-1 Asymptotic incline with mean and variance stabilizing between 5 and 7 cells

—n+1 and n-2: no asymptotic incline

—n-1: simple repeats stutter ratios much lower than compound or complex, opposite for n+1
* Areas for further work: GC content, and LUS based analyses, modeling

Syracuse University | College of Arts & Sciences| Forensics and National Security Sciences Institute 42
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