Syracuse University College of Arts & Sciences Drensic & National Security Sciences Institute
Characterizing stutter in single cells and the impact on multi-cell analysis
Michael A. Marciano, Ph.D.
Professor of Practice;
Drector of Research – Forensics and National Security Sciences Institute
Green Mountain DNA Conference 2024

Overview

- Why are we interested in single cells (sc)?
- Stutter in sc
 - Characterizing sc Stutter

se University | College of Arts & Sciences | Forensics and National Security Sciences Institute

• Predicting multi-cell stutter

Methods

- How does stutter in single cells manifest?
- Focus: n-1, n+1 and n-2
 - -Obligate stutter products \rightarrow only explanation is specific type of stutter
- "Sample size" = 180 cells (41 WBCs, 139 buccal epithelial cells); 6 contributors
 - **-29 cycles** n=125; **30 cycles*** n=41

Stutter ratio $S_R = \frac{stutter PH}{true \ allele \ PH}$ (eq. 1)Stutter frequency $S_F = \frac{number \ of \ stutter \ occurences}{number \ of \ true \ alleles}$ (eq. 2)

*D.R.L. Watkins, D. Myers, H.E. Xavier, M.A. Marciano, Revisiting single cell analysis in forensic science, Nature Scientific Reports 2021 11:1 11 (2021) 1-12. https://doi.org/10.1038/s41598-021-86271-6.

n-1 (29 cycle) stutter		Locus	Repeat structure	n	St _t mean stutter (%)	St _p mean stutter (%)
		D3S1358	simple	43	14.56 ± 15.90	21.60 ± 14.90
		D1S1656	complex	133	10.27 ± 12.64	21.17 ± 9.89
		D2S441	simple	68	1.80 ± 6.97	20.38 ± 14.00
		D10S1248	simple	105	6.24 ± 14.25	19.71 ± 19.52
6	St _p (all positive stutter)		simple	93	1.92 ± 6.16	16.27 ± 9.61
3			simple	111	0.00	NA
	<i>Range</i> : 5.67% to 56.92 % \pm 23.72	D16S539	simple	131	6.34 ± 13.33	26.84 ± 14.26
-		D18S51	simple	128	5.08 ± 9.83	22.15 ± 6.38
	<i>Min</i> : PentaD (n=111) – only one observed stutter peak	D2S1338	compound	138	7.30 ± 15.24	32.01 ± 15.08
- 7		CSF1PO	simple	103	2.14 ± 8.62	23.26 ± 18.66
	Max: D8S1179	PentaD	simple	104	0.05 ± 0.56	5.67
- 7		TH01	simple	187	0.27 ± 2.95	25.66 ± 17.71
S	(all possible stuttor events whether present or absent)	vWA	compound	145	3.24 ± 11.75	35.41 ± 19.68
0	Sit (an possible stutier events, whether present of absent)		complex	149	4.60 ± 10.63	25.21 ± 9.94
	<i>Range:</i> 0 to 14.56 ± 15.90	D7S820	simple	85	2.85 ± 12.30	34.58 ± 28.94
-		D5S818	simple	41	4.23 ± 8.15	17.97 ± 5.60
	Min: TPOX and PentaE	TPOX	simple	45	0.00	NA
		D8S1179	simple	100	5.17 ± 17.79	56.92 ± 23.72
-	Max: D3S1358	D12S391	compound	126	10.31 ± 20.44	37.28 ± 22.54
		D19S433	simple	47	4.75 ± 12.82	27.90 ± 18.50
	When it happensit is high	SE33	simple	76	2.89 ± 10.08	27.43 ± 17.87
•		D22S1045	simple	36	2.98 ± 10.02	26.79 ± 17.90
		DYS391	simple	47	6.87 ± 18.57	32.27 ± 29.29
		FGA	complex	133	7.42 ± 13.55	22.62 ± 14.71
		DYS576	simple	38	3.19 ± 11.24	30.28 ± 21.54
		DYS570	simple	27	5.75 ± 9.98	19.40 ± 8.19
	Syracuse University College of Arts & Sciences Forensics and National Security Sciences Institute		`			22

Methods - resampling (1 of 2)

- Question: At what point does variance normalize, stutter peak height become more predictable, and large "swings" in stutter are not observed?
- Resampling Overall, repeat type and individual
 - 1 thru 10, 15, 20 and 50 cells (29 cycle only) 5000x
 - Estimating the mean stutter and variance for cell counts ranging from
 - ANOVA ($\alpha = 0.05$) and the post-hoc Tukey's: evaluate the statistical sig. between each simulated cell grouping

• Based upon the following assumption

- a single DNA template strand grow exponentially by a power of two during the PCR process -
 - i.e., the total number of resulting strands for x number of cycles for a single template strand will be equal to 2^x and the total number of DNA strands in *n* number of cells for those x number of cycles

Methods – resampling (2 of 2)

Syracuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute

- Given a set of parent/stutter peak pairs from single cell stutter data, $P = \{p_1, p_2, ..., p_m\}$ and $S = \{s_1, s_2, ..., s_m\}$, where *p* is a single parent peak height RFU value, *s* is a corresponding stutter peak height value and *m* is the number of parent/stutter peak pairs in the experimental data set
- Resampling can be performed from this initial set through randomly selecting parent/stutter peak pairs (k), where k ranges from 1 to N, to simulate N new "single cell" samples. This process can be repeated c times (where c represents the number of cells being simulated) and the resulting peak heights summed to estimate parent and corresponding stutter peak heights for c starting cells for the k^{th} sample in N simulated amplifications:

$$PH_p = \sum_{j=1}^{c} p_{kj} \qquad (eq. 4)$$
$$PH_s = \sum_{j=1}^{c} s_{kj} \qquad (eq. 5)$$

• where PH_p and PH_s are the estimated parent and stutter peak heights. These peak heights can then be used to estimate stutter ratios for an amplification of *c* number of cells.

Discussion

- Horwitz curve \rightarrow stochasticity is expected, and we do see high levels of stutter
- Stutter can be high *when it occurs*
 - n-1 stutter in sc does not match the expectations according to developmental validation
- Generally, as locus size increases stutter decreases
- n-1 stutter in sc does not match the expectations according to developmental validation
- Over 23% increase in frequency of stutter 29 to 30 cycles
- Single cell to multi-cell
 - -n-1 Asymptotic incline with mean and variance stabilizing between 5 and 7 cells
 - -n+1 and n-2: no asymptotic incline
 - -n-1: simple repeats stutter ratios much lower than compound or complex, opposite for n+1
- Areas for further work: GC content, and LUS based analyses, modeling

-Syracuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute

Acknowledgements

- Co authors : Amber Vandepoele, Natalie Novotna and Dan Myers
- The National Institute of Justice for funding projects or portions of projects
- Syracuse University
 - Jonathan Hogg, Davis Watkins, Victoria Williamson, Nori Zaccheo, Morgan Frank, Haley Crooks, Taylor Zekri, Hannah Xavier, Olivia D'Angelo, Kacey Christian, Molly Dunegan
 - -Dr. Kathleen Corrado

racuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute

• Dr. Brian Young

43

References [1] E. Viguera, D. Canceill, S.D. Ehrlich, In vitro replication slippage by DNA polymerases from thermophilic organisms, J Mol Biol 312 (2001) 323–333. https://doi.org/10.1006/jmbi.2001.4943. [2] S.B. Vilsen, T. Tvedebrink, P.S. Eriksen, C. Bøsting, C. Hussing, H.S. Mogensen, N. Morling, Stutter analysis of complex STR MPS data, Forensic Science International: Genetics 35 (2018) 107–112.

- https://doi.org/10.1016/J.FSIGEN.2018.04.003.
 [3] R.S. Just, J.A. Irwin, Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results, Forensic Science International: Genetics 34 (2018) 197–
 205. https://doi.org/10.1016/j.fsigen.2018.02.016.
- [4] K.J. Van Der Gaag, R.H. De Leeuw, J. Hoogenboom, J. Patel, D.R. Storts, J.F.J. Laros, P. De Knijff, Massively parallel sequencing of short tandem repeats-Population data and mixture analysis results for the PowerSeq TM system, (2016). https://doi.org/10.1016/j.fsigen.2016.05.016.
- [5] P.S. Walsh, N.J. Fildes, R. Reynolds, Sequence Analysis and Characterization of Stutter Products at the Tetranucleotide Repeat Locus VWA, Nucleic Acids Research 24 (1996) 2807–2812. https://doi.org/10.1093/nar/24.14.2807.
- [6] M.D. Coble, J.-A. Bright, Probabilistic genotyping software: An overview, Forensic Science International: Genetics 38 (2019) 219–224. https://doi.org/10.1016/j.fsigen.2018.11.009.
 [7] S. Riman, H. Iyer, L.A. Borsuk, P.M. Vallone, Understanding the behavior of stutter through the sequencing of STR alleles, Forensic Science International: Genetics Supplement Series 7 (2019) 115–116. https://doi.org/10.1016/j.fsigss.2019.09.045.
- [8] J.S. Buckleton, D. Taylor, T. Kalafut, J.-A. Bright, J. Sutton, C. Schuerman, T. Farris, L. Armogida, Implementation and validation of an improved allele specific stutter filtering method for epg interpretation, Forensic Science International: Genetics (2017). https://doi.org/10.1016/j.fsigen.2018.03.016.
- [9] K. Oostdik, K. Lenz, J. Nye, K. Schelling, D. Yet, S. Bruski, J. Strong, C. Buchanan, J. Sutton, J. Linner, N. Frazier, H. Young, L. Matthies, A. Sage, J. Hahn, R. Wells, N. Williams, M. Price, J. Koehler, M. Staples, K.L. Swango, C. Hill, K. Oyerly, W. Duke, L. Katzlilierakis, M.G. Ensenberger, J.M. Bourdeau, C.J. Sprecher, B. Krenke, D.R. Storts, Developmental validation of the PowerPlex* Fusion System for analysis of casework and reference samples: A 24-locus multiplex for new database standards, Forensic Science International: Genetics 12 (2014) 69–76. https://doi.org/10.1016/j.FSIGEN.2014.04.013.
- [10] M.J. Ludeman, C. Zhong, J.J. Mulero, R.E. Lagacé, L.K. Hennessy, M.L. Short, D.Y. Wang, Developmental validation of GlobalFilerTM PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples, Int J Legal Med 132 (2018) 1555–1573. https://doi.org/10.1007/s00414-018-1817-5.
- [11] M. Kraemer, A. Prochnow, M. Bussmann, M. Scherer, R. Peist, C. Steffen, Developmental validation of QIAGEN Investigator* 24plex QS Kit and Investigator* 24plex GO! Kit: Two 6-dye multiplex assays for the extended CODIS core loci, Forensic Science International: Genetics 29 (2017) 9–20. https://doi.org/10.1016/j.fsigen.2017.03.012.
- [12] A.C. Jäger, M.L. Alvarez, C.P. Davis, E. Guzmán, Y. Han, L. Way, P. Walichiewicz, D. Silva, N. Pham, G. Caves, J. Bruand, F. Schlesinger, S.J.K. Pond, J. Varlaro, K.M. Stephens, C.L. Holt, Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories., Forensic Science International. Genetics 28 (2017) 52–70. https://doi.org/10.1016/j.fsigen.2017.01.011.
- [13] K.M. Stephens, R. Barta, K. Fleming, J.C. Perez, S.-F. Wu, J. Snedecor, C.L. Holt, B. LaRue, B. Budowle, Developmental validation of the ForenSeq MainstAY kit, MiSeq FGx sequencing system and ForenSeq Universal Analysis Software, Forensic Sci Int Genet 64 (2023) 102851. https://doi.org/10.1016/j.fsigen.2023.102851.
- [14] V.R. Williamson, T.M. Laris, R. Romano, M.A. Marciano, Enhanced DNA mixture deconvolution of sexual offense samples using the DEPArray[™] system, Forensic Science International: Genetics 34 (2018) 265–276. https://doi.org/10.1016/j.fsigen.2018.03.001.

Syracuse University | College of Arts & Sciences | Forensics and National Security Sciences Institute

Re	ferences
[15]	D.R.L. Watkins, D. Myers, H.E. Xavier, M.A. Marciano, Revisiting single cell analysis in forensic science, Sci Rep 11 (2021) 7054. https://doi.org/10.1038/s41598-021-86271-6.
[16]	J. Schulte, M.A. Marciano, E. Scheurer, I. Schulz, A systematic approach to improve downstream single-cell analysis for the DEPArray TM technology, Journal of Forensic Sciences 68 (2023) 1875–1893. https://doi.org/10.1111/1556-4029.15344.
[17]	J. Schulte, A. Caliebe, M. Marciano, P. Neuschwander, I. Seiberle, E. Scheurer, I. Schulz, DEPArray TM single-cell technology: A validation study for forensic applications, Forensic Sci Int Genet 70 (2024) 103026. https://doi.org/10.1016/j.fsigen.2024.103026.
[18]	C.M. Grgicak, Q. Bhembe, K. Slooten, N.C. Sheth, K.R. Duffy, D.S. Lun, Single-cell investigative genetics: Single-cell data produces genotype distributions concentrated at the true genotype across all mixture complexities, Forensic Science International: Genetics 69 (2024) 103000. https://doi.org/10.1016/j.fsigen.2023.103000.
[19]	K.R. Duffy, D.S. Lun, M.M. Mulcahy, L. O'Donnell, N. Sheth, C.M. Grgicak, Evidentiary evaluation of single cells renders highly informative forensic comparisons across multifarious admixtures, Forensic Science International: Genetics 64 (2023) 102852. https://doi.org/10.1016/j.fsigen.2023.102852.
[20] [21]	K. Anslinger, M. Graw, B. Bayer, Deconvolution of blood-blood mixtures using DEPArray TM separated single cell STR profiling, Rechtsmedizin 29 (2019) 30–40. https://doi.org/10.1007/s00194-018-0291-1. K. Anslinger, B. Bayer, D. von Máriásy, Application of DEPArrayTM technology for the isolation of white blood cells from cell mixtures in chimerism analysis, Rechtsmedizin (2017) 1–4. https://doi.org/10.1007/s00194-017-027-7-
[22]	F. Fontana, C. Rapone, G. Bregola, R. Aversa, A. de Meo, G. Signorini, M. Sergio, A. Ferrarini, R. Lanzellotto, G. Medoro, G. Giorgini, N. Manaresi, A. Berti, Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach, Forensic Science International: Genetics 29 (2017) 225–241. https://doi.org/10.1016/j.fsigen.2017.04.023.
[23] [24]	K. Huffman, J. Ballantyne, Single cell genomics applications in forensic science: Current state and future directions, iScience 26 (2023) 107961. https://doi.org/10.1016/j.isci.2023.107961. K. Anslinger, B. Bayer, New strategies in the field of mixture deconvolution single cell STR profiling, Forensic Science International: Genetics Supplement Series 7 (2019) 259–261. https://doi.org/10.1016/j.fisss.2019.00.99.
[25]	N. Sheth, K.R. Duffy, C.M. Grgicak, High-quality data from a forensically relevant single-cell pipeline enabled by low PBS and proteinase K concentrations, Journal of Forensic Sciences 67 (2022) 697–706. https://doi.org/10.1111/1556-4029.14956.
[26]	K. Huffman, E. Hanson, J. Ballantyne, Recovery of single source DNA profiles from mixtures by direct single cell subsampling and simplified micromanipulation, Science & Justice 61 (2021) 13–25. https://doi.org/10.1016/j.scijus.2020.10.005.
[27]	P. Gill, J. Whitaker, C. Flaxman, N. Brown, J. Buckleton, An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA, Forensic Science International 112 (2000) 17–40. https://doi.org/10.1016/S0379-0738(00)00158-4.
[28]	J. Weusten, J. Herbergs, A stochastic model of the processes in PCR based amplification of STR DNA in forensic applications, Forensic Science International: Genetics 6 (2012) 17–25. https://doi.org/10.1016/j.fsigen.2011.01.003.
[29]	N. Gurram, A Mathematical Model of Polymerase Chain Reaction Induced Stutter, (n.d.).
[30]	K.R. Duffy, N. Gurram, K.C. Peters, G. Wellner, C.M. Grgicak, Exploring STR signal in the single- and multicopy number regimes: Deductions from an in silico model of the entire DNA laboratory process, ELECTROPHORESIS 38 (2017) 855–868. https://doi.org/10.1002/elps.201600385.
[31]	J. Schulte, M.A. Marciano, E. Scheurer, I. Schulz, A systematic approach to improve downstream single-cell analysis for the DEPArray TM technology, Journal of Forensic Sciences 68 (2023) 1875–1893. https://doi.org/10.1111/1556-4029.15344.
[32]	H. Hardin, Single Cell Forensic Genomics - DNA Profiling of Micromanipulated Single Spermatozoa, Electronic Theses and Dissertations, University of Central Florida, 2020.
[33]	K. Huffman, E. Hanson, J. Ballantyne, Y-STR mixture deconvolution by single-cell analysis, Journal of Forensic Sciences 68 (2023) 275–288. https://doi.org/10.1111/1556-4029.15150.
[34]	M. Thompson, The amazing Horwitz function, AMC Technical Brief - The Royal Society of Chemistry 17 (2004) 1–2.
	Syracuse University College of Arts & Sciences Forensics and National Security Sciences Institute 45

