Green Mountain DNA Forensics Conference July 24, 2023

Technologies of the Rapid Changing Landscape of Next Generation DNA Sequencing

Scott Tighe

Technical Director UVM Genomics Core Center for Biomedical Research Firestone 150 Burlington Vermont

Outline

- Background
- UVM Genomics
- Resources
- Current Sequencing Technologies
- New and Emerging Sequencing
- Plug and Play Automation
- Low Input Biomass Challenges
- Controlling Genomic Noise in NGS sequencing
- Other New Technologies

Background

- 20 years in managing a genomics core
- Started Microbiology in 1981 and Genomics in 1995
- ABRF Metagenomics & Microbiome Research Group
- International Microbiome and Multi-Omics Standards Alliance (NIST)
- Genomics Standards Consortium
- Extreme Microbiome Project
- NASA ISS DNA grant and DOD DOA grant
- Extremophiles and difficult to extract samples
- Product development

Genomic Metadata Standards

Checklist	Description
MIGSEukaryote	Minimal Information about a Genome Sequence: eukaryote
MIGSBacteria	Minimal Information about a Genome Sequence: cultured bacteria/archaea
MIGSPlant	Minimal Information about a Genome Sequence: plant
MIGSVirus	Minimal Information about a Genome Sequence: cultured bacteria/archaea
MIGSOrg	Minimal Information about a Genome Sequence: org
MIMS	Metagenome or Environmental
MIMARKSSpecimen	Minimal Information about a Marker Specimen: specimen
	Minimar information about a Marker Specifien, specifien
MIMARKSSurvey	Minimal Information about a Marker Specimen: survey
MIMARKSSurvey	Minimal Information about a Marker Specimen: survey Minimum Information About a Single Amplified Genome
MIMARKSSurvey MISAG MIMAG	Minimal Information about a Marker Specimen: specimen Minimum Information About a Single Amplified Genome Minimum Information About a Metagenome-Assembled Genome

http://w3id.org/mixs

Agriculture QuantityValue Food-farmEnvironment Food-foodProductionFacility Food-animalAndAnimalFeed Food-humanFoods Symbiont-associated Water WastewaterSludge Soil **Sediment Plant-associated MiscellaneousNaturalOrArtificialEnvironment** MicrobialMatBiofilm HydrocarbonResources-fluidsSwabs HydrocarbonResources-cores Human-vaginal Human-skin Human-oral Human-gut Human-associated Host-associated

BuiltEnvironment

<u>Air</u>

Plus 87 additional

and a start of the	なっていてい	Provinces of	2/3
- XMP	ABOUT	TEAM	Extreme Microbiome Project Profiling Novel and Extreme Environments using Advanced Genomic and Microbiological Technologies
	PROJECTS	METHODS	
	MEETINGS	PARTNERS	
	RESOURCES	CONTACT	
XMP © 2015. Rowered By illumina	ALL RIGHT RESERVED		
K			
	92		

UVM Genomics Core

- o Integrated Center Genomics, Bioinformatics, Proteomics, Imaging, SEM, TEM, Confocal, Flow Cytometry, Spatial
- o 21 Faculty and Staff
- o 3 Room Genomics Lab- DNA-free sample prep, low amp, high amp

Full service core

DNA, RNA, FFPE extraction Quantification and QA/QC Sanger Sequencing Fragment Analysis-CE DNA and RNA sequencing PCR and Ultra-Low amplification Gene Expression, CNV, HiC, ATAC, Methylation Microbiome metagenomics Single cell and Spatial sequencing Culturing/microscopy High Volume liquid genomic analysis Gel doc Imaging Advanced PCR trouble shooting

Bleach Stations, Nitrogen tanks

Instruments Singular G4 NGS (660gbases/run) Illumina NGS MiSeq MiniSea HiSeq 1500 Oxford Nanopore 3 MinIONS, 1 Nanopore MK1C 1 Nanopore P2 Solo PromethION with RTX4090 GPU 1 Nanopore GridION, 4 Flongle adaptors ddPCR-BioRad QX200 10x Genomics Single Cell system RTqPCR (QuantStudio 6F, ABI7500 fast) 1 Nanodrop, 4 Qubit fluorometers, 1 Quantus Fluorometer **BioAnalyzer Fragment Analyzer-2100** Covaris S2 Hydroshear ChemiDoc XRS+ Photodocumentation system 2 Bead Beater systems for extractions 12 thermocyclers, 4 PCR hoods, Speedvac

User Resources and Forums

- WhatsApp for DNA forensics-Open discussion on techniques
- WhatsApp for Nanopore and other sequencing- Nanopore and Long Read Challenges

Please Let me know if you would like to be added

Current Next Gen Sequencing Technologies

Why is NGS important

Sanger vs MPS Workflow Comparison – Whole Mito Analysis

Sanger Sequencing

Single Target Amplification

Multiple long-range amplifications per sample

Short amplicons in 1-2 reactions per sample Taq, buffer dNTPs

Multiplex Amplification

Sanger Sequencing

> 100 reactions for each sample

Entire sample library prepared in a single

Library Preparation

Separation and detection on CE

Each reaction sequenced separately

Multiple Samples pooled and sequenced simultanously

MPS Sequencing

Data analysis

Non-quantitative, difficult deconvolution of mixture/heteroplasmy

Data displayed as individual reads - quantitative heteroplasmy and mixture assessment

10. El			1			
an home for a strange	Sec. Fra	- Since			and and	Parties
1874	1					
	1				1.4	
a free state and the	1000					
	1.1.1.1.1.1					
	and the second					
	10000		1.10			
100 B	Contraction of the					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	1					
	1					
The second se	Contraction of the					
1.0 - a- 00						
		A IA Y A	S	2 44 Alex	10.18.1	
The walk as the art requires	Ppc ==				1.141	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PARAME BY A	Sec. 20	1.1.1.1	24.28	0.000	
a contraction and the regist	test into a pr	14.437.4				
1	PC - 1 - 1		10.00.00.00.00	10.00	0.000	

Data Analysis

Massively Parallel Sequencing

DNA Extraction

Human DNA

Quantification

well

Current Sequencing Technologies

Sanger Sequencing and CE

- Promega Spectrum (6 and 8 color)
- Life Technologies SeqStudio (4, 8,16 caps)
- ABI 3500 and 3730 (96 caps)
- Standard CE technology
- ProDye, BrightDye, MagaDye, BrilliantDye, SupreDye, BigDye, Gerbera v3.1, QuantumDye, and DYEnamic ET.

Massively Paralleled Sequencing (NGS) Short Read Sequencing Technologies

Illumina MiSeq/Verogen

- Low output short read NGS sequencer
- Single or Paired end sequencing
- Approved for both Clinical and Forensics

ThermoFisher Scientific

- Ion Torrent PGM series continues
- S5
- GeneStudio and Genexus sequencers

New and Emerging Sequencing

New NGS systems are Rapidly Coming to Market

- PacBio Revio
- PacBio Onsu
- Singular G4
- Element Biosciences Aviti
- Ultima
- Illumina NovaSeq X

Pacific Biosciences Revio System

2

- Nanofabricated Revio SMRT Cells 25 million zero-mode waveguide wells
- 4 stages run 4 SMRT flow cells at once
- HiFi yield 15–20 kb fragments 90 Gb/SMRT (5mC at CpG sites)
- Q Score approaching 40
- ~\$800K

Pacific BioSciences Onsu

- Sequencing by Binding
- Short Read Sequencer
- Formerly Omniome
- 2 x 150 bp (400 mr (PE)120 Gb)
- Q-Scores 35-44
- No Index hopping
- No incorporated scared bases
- 90%+ Q40
- Amplicon linearity to 0.001%
- Beta currently but Q3 2023
- \$400K

40.000

50.000

60.000

70.000

30.000

n

10.000 20.000

Updates on the Singular Genomics G4

- Short read sequencer similar to Illumina NextSeq and Novaseq
- 1/3 running cost as Illumina
- 15-400 Gb output
- 75-90% Bases ≥ Q30
- Accuracy 99.6 99.9%
- Index hopping at 0.07% Very good
- 1 lane (50mr or 100mr) \$150/lane
- 1 to 16 lanes at a time-24hr
- 2.2 billion clusters-Similar to NovaSeq6000
- \$250K
- Could Replace the MiSeq

Element Biosciences-AVITI

Short Read Paired End MPS sequencing Error rate 0.005 80-280 gbases Index hopping 0.01% Solid State Rolling Circle Amplification (similar to nanoball) PE 500 maybe PE1000 eventually

Typical run in Chris Lab:

- Reads Generated (million) 1085
- Assigned Reads (million) 1053
- Q30 93.04%
- Mapping 97.03%
- \$250K

Loop-Seq (Element BioSciences)

- Long Read sequencing with Short read platform
- Amplify a large fragment with one Barcode
- Digest and redistribute same barcode across the digested fragment
- Reassemble computationally
- Simple and clever

Illumina MiSeq, NextSeq2000, NovaSeqX

• MiSeq

- Still great
- No upgrades planned
- Very expensive to run
- PE300
- Very flexible running formats
- User Friendly

• NextSeq 2000

- P1, 2, 3 flow cells
- Sequencing by Synthesis
- Barcode hopping require UDI and UMI
- 3 times more expensive than Element and Singular to operate
- \$300K

NovaSeqX (Genome Sequencer)

- million dollars
- \$10K/Month Service Contract
- terabase sequencing
- 150gb-8 tb
- Not useful for amplicon or panels
- Max PE150

**Illumina has big problems right now

	MiSeq Reagent Kit v2	MiSeq Reagent Kit v3	MiSeq Reagent Kit v2 Micro
Single Reads	12-15 million	22-25 million	4 million
Paired-End Reads	24-30 million	44-50 million	8 million

Configuration	Flow Cell				
Configuration	P1	P2	Р3		
PE150	30gb	120gb	360gb		
PE300	60 gb	180 gb			

Configuration	Flow Cell				
Configuration	1.5	10	25		
PE150	500 gb	3000 gb	8000 gb		

Ultima Genomics UG100 Sequencer

Intended for large Genome Center such as the Broad and NYGC SE300 bp 3,000 Gb (>3 tbases) NEBNext Ultra II FS DNA Library No Flow cells- Uses Spinning Silcon wafer Library Bead-based sequencing (similar to 454 and Genapsys) Sequencing-By-Synthesis

Sequencing Platform Comparisons Using HB RNA

- o GAPDH was compared at the same region
- Same sample / Same library
- o Images of alignments of 50 Bui gapDH reads

Nanopore Sequencing

- Read Lengths 400bp to 1 x10⁶
- Benchtop and Hand held sequencing
- Q scores up to 22 or 26+ with duplexing
- Many library approaches
 - Amplicon
 - Artic
 - Ligation
 - Rapid DNA sequencing
 - DNA base modification detection
 - Direct RNA sequencing
 - RNA base modifications
 - Low input PCR barcoding
 - Native Ligation Barcoding
 - Short read sequencing

GridION 8 gbase/flow cell 10.4.1

MinION MK1C 8 gbase/flow cell 10.4.1

PromethION/P2 50 gbase/flow cell V10 Flow cell

Rapid Nanopore DNA Screening

ONT

C:Users'immicorescu/Downloads/Barcode 10/barcode10_merged fastq 16001 output quality scores Duality 5.37 to 13.80

100C 10m

Ampure Beads

Oxford Nanopore Improvements

- Release of 10.4.1 Flow cell (PromethION and MinION) Increased accuracy to mode Q19 singleplex Ligation LSK114 Reduced output in our hands (9.4 to 10.4) (16 gb to 8 gb) Duplex analysis increases accuracy to greater than Q25 New Motor
- New version 10 Flongles for low output applications (700mb)

- Adaptive Sampling (sequencing)
 - Ability to selectivity "reject" pre-defined sequences for the Nanopore
 - Great for un-want high background sequencing Human DNA in a microbiome sample Tick DNA in microbiome sample
 - Need a fast computer to keep up with basecalling GPU (280-400 bases/ second)

Gas Sulfur cave

Fast Computer for Rapid Base calling and Adaptive Sampling

At 400 bases/sec, Must reject sample from pore in 20 bases or 50 milliseconds

ORI	CORMANCE PCS			
Origin PC Qu Date: Thurso Quote numb Valid until: 7/	Origin PC Quote Date: Thursday, July 6, 2023 Quote number: 1102054 Valid until: 7/11/2023		Corsair, 115 N. McCarthy Blvd Milpitas, CA 95035 1-877-674-4460 originpc.com sales@originpc.com	
Customiza	tions/Descript	ions:		
	QTY	SKU	Unit	Total
	1	L-CLASS	\$7,230.20	\$7,230.20
Case: Corsa Exterior Co Processors CPU: The Motherboar Memory: 96 System Co System Far Graphics C Operating S RAID: 1 Hard Drive: Hard Drive Power Sup Power Sup Networking The ORIGIN	air 7000D Airflow lor: Black : Intel Core i9-13 rmal Compound rd: ASUS ROG M GGB CORSAIR VI oling: iCUE H150 ns: ORIGIN PC S ards: NVIDIA 240 System Drive: Co : Corsair 8TB MP0 re: 1 ply: CORSAIR A pply Sleeved Ca grated High-Defin g: 10GbE Dual-Pc N Difference: Unr	900KS 24-Cores 3.2GHz AXIMUS Z790 HERO DE ENGEANCE DDR5 (2x48 bi LCD ELITE CAPELLIX tandard Fan Kit 3B GeForce RTX 4090 nstallation not supported orsair 8TB MP600 PRO X 300 PRO XT GEN 4 K1600i ATX Titanium Ible: Black Sleeved Cable ition Audio rt PCIe Network Interface ivaled Quality &Performa	(6.0GHz TurboBoost) DR5 GB) 5600MHz XT Liquid CPU Cooler by Origin PC) T GEN 4 es +90 e Adapter nce - L-Class 7000A	

NGS Plug and Play Automation

Thermal and magnetic zon Single use cartridge 12 ports for reagents Any library prep- flexible

Low Input Biomass Library Amplification

Low Input DNA Amplification

Multiple Displacement Amplification (MDA-Phi29)

- Isothermal down to 10pg
- Phi29 RepliQ polymerase
- Bias are well known
- Results in extensively branched product
- Poor for Short fragment DNA
- T7 Endo I

Primary Template-directed Amplification (PTA)

- Isothermal
- Low bias as reported by literature
- 1pg
- 1kb limit

Coverage and SNPs

Fraction of SNVs called

Ultra Low Input Biomass for Nanopore

98.86

MDA 18

MDA 19

1,169,540

Oxford Nanopore-How long can you go?

- Native DNA detection
 - RAD004-Rapid singe tube
 - Molecular counting but requires carrier DNA
 - Methylation calling
- Rapid PCR Barcoding
 - 200 pg
 - MW limit
- Avoid PCR without dUTP/UNG chemistry
- DNA sequencing

NASA Study- how low can you go E. coli DNA titration with and without lambda

Controlling Low Level Genomic Noise

Low input Noise and the Kitome are Well Recognized

DNA-Free Reagents Are Important to Avoid False Results in NGS

Bioflms and Cells walls

MetaPolyzyme (cell wall and membrane lysis)

- Achromopeptidase
- Chitinase
- Lyticase
- Lysostaphin
- Lysozyme
- Mutanolysin

Exopolyzyme Multi-enzyme (under development)

- Slime, Capsules, ECP, ECM, polyglutamic acid, Gylcocalyx
- Protects the cell
- Allows nutrient trapping
- Common in extreme environments
 - α-Amylase
 - Cellulase
 - β-Glucosidase
 - Lyticase
 - β-N-Acetylglucosaminidase
 - Alginate lyase
 - Lipase

Nucleic Acid Preservative Buffer TRIS Solution Water Mycopolyzyme PBS

Other Novel Technologies in NGS

Soil Microbiome Analysis Forensic Tool (SMAFT)

- Tracking microbiomes
- Good application of Loop-Seq
- Reference database free prediction of the origin of soil samples
- Developed on basis of information theory, graph theory (Metagraph), similarity learning and feature learning
- Based on findings of the Mason et al
- Universal methodology developed by MetaSub and Biotia

Calibrated system for real world cases, on petabase scale dataset: ~1000 training samples ~600 test & mock samples

Project Funded by National Centre for Research and Development of Poland

<u>Michał Kowalski</u>, Kamila Marszałek, Alina Frolova, Agata Jagiełło, Anna Woźniak, Łukasz Nowak, Andrzej Ossowski, Rafał Płoski, Renata Zbieć-Piekarska, Paweł P. Łabaj, Wojciech Branicki

Cost efficient optimization of Targeted Sequencing technology, to resemble Whole-Metagenome-Sequencing levels of signal

www.smaft.eu

DOB-BIO10/03/01/2019

Molecular Loop Inversion Probes

- Rapid targeted library probes for NGS sequecing
- Targeted
- Substitute for PCR Ampliseq
- Genome Tiling
 - Carrier screening
 - Hereditary and somatic oncology research
 - Molecular characterization of rare and
 - complex diseases
 - Pathogen characterization and surveillance
 - Genotyping-by-sequencing

2 – Target capture through fill-in of the region between the probe arms, followed by ligation, creates a circular probe

3 – Enzymatic cleanup removes all linear DNA. Subsequent PCR linearizes the circular probe while adding on UDIs.

4 – Barcoded libraries are combined and purified to yield sequencing-ready library pools

BioNano Ionic DNA Purification

Uses isotachophoresis (ITP) to isolate, purify, and concentrate genomic DNA and RNA from cells, tissue, and FFPE samples

Applied electric field across the length of the microchannels, tseparates and concentrates nucleic acid between buffers with higher and lower mobilities

No organic solvents or high-salt buffers

Sequencing Degraded and Mixed Mitochondria Species Using Nanopore

- Small POP Project with Bruce, George, and my team.
- Possible application for augmenting LoopSeq with long read Nanopore may prove useful for mild degradation values and mixed samples

Closing Comments

- The landscape of Next Generation sequencing is changing so fast, it is hard to follow.
- The number of new developments and instrument are happening at the monthly level, not by the year or 5 year cycle
- Most are occurring for Single cell and Spatial sequencing

Is DNA Origami the next disruptive technology?

